
Data Structures and Algorithms Kartik Kapur

Orders of Growth and Intro to Asymptotics

1 An Introduction to Asymptotics

Now that we’ve discussed programming, we are going to focus on how to make our programs run well enough
to work in the real world. In order to do this, we will discuss asymptotics, a way of measuring either the
Time Complexity or Space Complexity. The former comes more into play in the next few chapters;
however, we will discuss Space Complexity in Chapter 5 and 6 briefly.

2 Order of Growth

The speed at which a program runs can vary from computer to computer based off various factors such
as processors. In order to measure speed at a uniform scale, we use asymptotics, which give tell us how a
program runs as the input scales to an arbitrarily large number. It is extremely important to realize that
no matter how powerful your computer is, your asymptotic runtime will be the same (though the actual
runtime may be different).

There are a few simple orders of growth. In increasing order they are:

• log(n)

• n

• n*log(n)

• n2

• 2n

• n!

The higher the order of growth, the slower the program runs- as programmers, we strive for a low order of
growth. The order of growth ignores the constant factor in the start of a function. This means that

100N is written as N.

We do this because they both scale the same in the long run. Additionally, when calculating the order of
growth and two terms are being added or subtracted, we always take the highest term. The result of this is
that the order of growth of

NlogN + 1000N + 99 is NLogN.

Let’s do a basic exercise to see if we understand what is going on. Find the asymptotic running time of
the following code where N is the length of the array

1 pub l i c s t a t i c void funt imes (i n t [] a){
2 i n t j = 0 ;
3 f o r (i n t i = 0 ; i < 2∗a . l ength ; i ++){
4 j ++;
5 }
6 }

The running time of this snippet of code would be N because we do a total of 2N steps. Because in asymptotics we disregard

constants, the running time of this snippet.

Page 1

Data Structures and Algorithms Kartik Kapur

3 Asymptotic Notation

We’ve gone over basic runtimes, but there are various notations used to describe certain needs of the algo-
rithm.

• Ω - Big Omega is used to describe the lower bound of a function. For example n3 ∈ Ω(n2) because
the runtime would always be less than n3

• O - Big O is used to describe the upper bound of a function. For example n2 ∈ O(n3) because the
runtime would always be greater than n2

• Θ- Big Theta is used to describe a tight bound of a function. This means that the upper and lower
bound are the same in this scenario. For example n2 ∈ Θ(n2) because the function always runs in n2

time

Though technically, Ω and O can be used to be anything lower or higher than the true runtime respectively,
we tend to want the tightest bound possible, so we would usually want the tightest possible lowest bound
or upper bound (meaning what are the lowest/highest running times that could actually occur).

Instead of saying Ω or O, we could generate a stronger statement by saying Θ in the worst case/best
case. This statement is equivalent to what we said in the previous paragraph. It allows us to keep a tight
bound and provides us more information than we would get from either Ω or O. The distinction is subtle
but let’s take this short example.

• In worst case, our code runs in Θ(n2) time.

• Our code is bounded by O(n2)

This two statements seem nearly identical, but upon a second glance, you may notice that the first state-
ment tells us that the program can actually run in n2 time in the worst case (it can never go above) whereas
the second statement just says the program will never go above n2. Basically, the second statement does
not really tell us if the program can physically run at that speed. It is imperative that one realizes that omega

Though on first glance, it may seem that Ω means best case and O means worst case, this is not nec-
essarily the situation. In the worst case, you may have a lower bound and upper bound, and a similar
situation may occur in the best case. Let’s take this pseudocode example

1 i f (n i s even){
2 Randomly pick a number 1 or 2 ;
3 i f (number i s 1){
4 do a func t i on that takes n time
5 }
6 e l s e {
7 do a func t i on in n2

8 }
9 e l s e {

10 Randomly pick a number 1 or 2 ;
11 i f (number i s 1){
12 do a func t i on that takes n3 time
13 }
14 e l s e {
15 do a func t i on in 2n

16 }

In this case, the best case is that n is even; however, there are 2 scenarios that could occur in this situation.
The lower bound of the best case is Ω(N) while the upper bound of the best case is O(N2). The worst case

Page 2

Data Structures and Algorithms Kartik Kapur

is n is odd. The lower bound of the worst case is Ω(n3) and the upper bound of the worst case is O(2n).
After this analysis, we can see that Ω and O are not in reference to a specific scenario for a function.

One last thing that we will discuss is Tilde Notation. Tilde is a special type of notation denoted with ∼.
Tilde notation is similar to normal runtime as it looks for the highest running time; however, it takes into
account the constant factor of the higher order term. Let’s take this example:

15n2 + 100n + 100 ∼ 15n2

For function to have the same running time as another function, it just needs to be of the order- 15n2 has
the same asymptotical running time as 100n2. However, to have the same tilde running time, the constant
on the highest order terms must be the same so 15n2 would only have the same running time as another
function with 15n2 as it’s highest term. Another way of thinking about this is that given two functions f(x)
and g(x)

f(x) ∼ g(x) if limx→∞
f(x)

g(x)
= 1

Page 3

	An Introduction to Asymptotics
	Order of Growth
	Asymptotic Notation

