
Data Structures and Algorithms Kartik Kapur

Practice Midterm 1
You have 2 hours to complete this exam. This exam is meant solely for practice and topics that are not in
this exam may be covered while topics in it may not be covered. This exam is out of 100 points. Every line
may have at most one statement (including closing brackets).

Problem Points
1 12
2 5
3 6
4 7
5 8
6 12
Total 50

Page 1

Data Structures and Algorithms Kartik Kapur

1 (Vitamin) C what’s going on? (4 pts)

Step through the running of the following program. At certain point in the methods there are comments
with letters. In the corresponding blanks for each letter, write the values of o1.x[0], o1.x[1], o2.x[0], and
o2.x[1]. Assume that we start off with the constructor being called.

public class OJ{
int [] x ;
OJ z ;
OJ(int x , int y){

this . x = new int [2] ;
this . x [0] = x ;
this . x [1] = y ;

}
}

public class Ju ice {
public OJ o1 ;
public stat ic OJ o2 ;

Ju i ce () {
o1 = new OJ(1 , 2) ;
o1 . z = new OJ(5 , 6) ;
o2 = new OJ(3 , 4) ;
o2 . z = new OJ(7 , 8) ;
p u l p i f y () ;
vitaminSeed () ;
appleImposter () ;

}

public void p u l p i f y () {
o1 . x [1] = o2 . x [1] ; //a

}

public void vitaminSeed () {
o1 . x [0] = o1 . z . x [0] ; //b
o2 . x [0] = o2 . z . x [1] ; //c
o1 . z = o2 ;

}

public void appleImposter () {
o1 . x [1] = o2 . x [0] ;
o2 . x [0] = o1 . x [1] ;
o2 . x [1] = o1 . z . x [0] ; //d

}
}

a o1.x[0] , o1.x[1] , o2.x[0] , o2.x[1]

b o1.x[0] , o1.x[1] , o2.x[0] , o2.x[1]

c o1.x[0] , o1.x[1] , o2.x[0] , o2.x[1]

d o1.x[0] , o1.x[1] , o2.x[0] , o2.x[1]

Page 2

Data Structures and Algorithms Kartik Kapur

2 Errrrr.er: (5 pts)

Below we have a buggy class. Your job is to identify all errors. In the lines below write the line number
for each line that has an error. For each error, write down ”C” if it a compilation error and ”R” if it is a
runtime error. If a line relies on something that has errored out, you can assume that the prior error was
fixed. Assume we start off by instantiating the class CorR. There are at most 10 errors total.

1 public class CorR {
2 public stat ic f ina l int [] a r r = new int [1 0] ;
3 int i ;
4 XD xd ;
5 public class XD {
6 public int va l ;
7 XD(int x) {
8 va l = x ;
9 }

10 }
11 CorR () {
12 i = 5 ;
13 xd = new XD(i) ;
14 d i g g i t y () ;
15 dawg () ;
16 coolCat () ;
17 }
18
19 public stat ic void d i g g i t y () {
20 ar r [0] = 10 ;
21 xd . va l = 0 ;
22 ar r [2] = 15 ;
23 }
24
25 public void dawg () {
26 for (int i = 0 ; i < ar r . l ength ; i++) {
27 ar r [i] = i ∗ 2 + 1 − 10 + . 5 ;
28 }
29 d i g g i t y () ;
30 new int [] temp = new I n t e g e r [1 0] ;
31 ar r = temp ;
32 }
33
34 public stat ic void coolCat () {
35 i ++;
36 dawg () ;
37 ar r [2] = ar r [1] + 5 ;
38 xd = new XD(1 0) ;
39 int [] temp = ((int []) new double [1 0]) ;
40 temp = arr ;}
41 }
42 }

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Page 3

Data Structures and Algorithms Kartik Kapur

3 Casts and Inheriting Broken Bones (12 pts)

Below is a set of classes. We will have a series of method calls. In the lines following each method call (one
line per line that is displayed after the call), write what is printed, if anything at all. If there is a compilation
or runtime error please say which one it is. You may assume that previous lines affect the following.

public class Garmr {
int s i z e ;
boolean has fangs ;
S t r ing name ;
public Garmr () {

s i z e = 0 ;
has fangs = fa l se ;
name = ”Grimie” ;
System . out . p r i n t l n (”Woof”) ;

}
public Garmr(int s i z e , boolean fangs , S t r ing name) {

this . s i z e = s i z e ;
this . has fangs = fangs ;
this . name = name ;
System . out . p r i n t l n (”Hoowl”) ;

}
public void open () {

System . out . p r i n t l n (” the re ”) ;
}
public void b i t e () {

i f (! has fangs) {
System . out . p r i n t l n (” a l l bark”) ;

} else {
System . out . p r i n t l n (” s n a r l ”) ;

}
}

}

public class Fenr i r extends Garmr {
int anger ;
public Fenr i r () {

System . out . p r i n t l n (”hungry”) ;
this . s i z e = 100 ;

}
public Fenr i r (int s i z e , boolean fangs , S t r ing name , int f u r) {

super (fur , fangs , name) ;
System . out . p r i n t l n (” s n a r l ”) ;
this . anger = anger ;

}
public void howl () {

System . out . p r i n t l n (”howl”) ;
}
public void howl (int l oudness) {

System . out . p r i n t l n (loudness + ” OW”) ;
}
public void b i t e () {

System . out . p r i n t l n (”yum! ”) ;
}

}

Page 4

Data Structures and Algorithms Kartik Kapur

(a) Garmr smal lBjorn = new Garmr () ;

(b) smal lBjorn . b i t e () ;

(c) Garmr f u r t = new Fenr i r () ;

(d) f u r t . howl () ;

(e) f u r t . b i t e () ;

(f) Fenr i r g o l t = new Garmr () ;

(g) Fenr i r nutty = (Fenr i r) smal lBjorn ;

(h) Fenr i r y u l i = new Fenr i r (5 , true , ” jimbo” , 1 0) ;

(i) g o l t . b i t e () ;

(j) y u l i . b i t e () ;

(k) ((Fenr i r) f u r t) . howl (1 0) ;

(l) y u l i . howl () ;

Page 5

Data Structures and Algorithms Kartik Kapur

4 It’s always my de-Fault (5 pts)

Use the below interfaces to create a class that has the minimal amount of methods implements Viking and
compiles.

public interface Norse {
f ina l stat ic int b u r l i n e s s = 100 ;
void breathe () ;
void grunt () ;

}

public interface Viking extends Norse{
f ina l stat ic int b u r l i n e s s = 300 ;
boolean f l y (boolean wings) ;
default void grunt (S t r ing t){

System . out . p r i n t l n (t + ”ARRRRRGH”) ;
}

public class Bjorn implements Viking {

}

Page 6

Data Structures and Algorithms Kartik Kapur

5 Osmosis (10 pts)

We want to add a method to IntList so that if 2 numbers in a row are the same, we add them together and
make one large node. For example:
1 → 1 → 2 → 3 becomes 2 → 2 → 3 which becomes 4 → 3

public class I n t L i s t {
public int f i r s t ;
public I n t L i s t r e s t ;
public I n t L i s t (int f , I n t L i s t r) {

. . .
}

public void addAdjacent () {

}
}

Page 7

Data Structures and Algorithms Kartik Kapur

6 Teenage Mutant Ninja Hurdles (8 pts)

For each of the following subproblems follow the instructions

(a) General Colonel wants to make a method that both overloads and overwrites the method of a parent
class. Is this possible? Explain your answer.

(b) When would you use a comparable over a comparator? Which one is preferable?

(c) True or False, an instance of a class has a broader scope than just the class. That is, from an instance,
you can always call at least as the variables and methods as you can from just the class.

(d) Does overloading a method take into account the return value? Basically would changing public int
hello(int hi)... to public boolean hello(int hi)... be valid? Explain why.

7 Riddle Me This (0 pts)

What is it that no person wants to have but no person wants to lose?

Page 8

Data Structures and Algorithms Kartik Kapur

8 A Test Within a Test (12 pts)

Corn on the Cobb is a IntList Romer who wants to edit the IntList class so that it can help him roam
safely. His idea is to write a method dreaming which is a method that adds a number to the end of an
IntList. However, there is a catch. The IntList must have a size less than or equal to 3. If the size ever
exceeds 3, the first element of the IntList must be removed and the second element should become the
new start of the IntList. For example, say we have the following calls

1 a = new I n t L i s t () ;
2 a . dreaming (1) ; a . dreaming (2) ; a . dreaming (3) ; a . dreaming (4) ;

a.first would be 2, a.rest.first would be 3, a.rest.rest.first would be 4 equivalent to the IntList 2→ 3→ 4.
It is this IntList because 1 is removed when 4 is added since the IntList size would exceed 3.

(a) Complete the IntList class such that it fulfills the above requirements. Below is the IntList class
for reference. A reminder that the dreaming method is void. (8 pts) abscissa

public class I n t L i s t {
public int f i r s t ;
public I n t L i s t r e s t ;
public I n t L i s t (int f , I n t L i s t r) {

. . .
}
public int s i z e () {

. . .
}

public void dreaming (int n) {
i f (this . s i z e () == 0) {

;
} else {

i f () {

}
I n t L i s t p =

while () {

}

}
}

Page 9

Data Structures and Algorithms Kartik Kapur

(b) Corn on the Cobb now wants to test this code to make sure that he does not lose his way in his
dreams (that would really suck). Write a basic JUnit test to make sure that your code works as
expected.
Note: The IntList.list(1, 2, 3,4, 5) would make an int list 1→ 2 → 3 → 4 → 5

public void testDreaming (){

}

Page 10

Data Structures and Algorithms Kartik Kapur

9 Compearisons and other fruits (20 pts)

Note, the below problem is fairly hard, it is recommended to make sure the prior problems
are done properly before attempting this one.
You have a special BNode class. Each BNode class looks as follows

public class BNode {
int sugar ;
BNode next ;

}

You are now attempting to construct a BList. A BList is similar to an SList- specifically, it looks as follows:

public class BList {
BNode f i r s t ; // F i r s t node
int sweetness ; //The sum of the sugar o f a l l BNodes in BList
int s i z e ; //The number o f BNodes in the BList

}

Your job is to complete the following methods in the BList class.

• BList(): The Constructor for a BList fill it as you see fit.

• BList addtoBList(BNode elem, BList lst): Returns a BList with elem added to lst. If elem’s sugar
value is greater than lst’s sweetness value then returned BList should have elem at the front– otherwise
it should have elem at the end of the BList.

• BList addBLists(BList a, BList b): Returns a BList with a and b added together. Use the following
scheme for adding BLists:

1. The BList whose sweetness value is larger should come before the BList with the smaller sweetness
value.
For example, say we had list a which has a sweetness value of 3 and list b which had a sweetness
value of 4. The resulting BList would be b→ a

2. If the sweetness values for the two BLists are the same then the one with the larger size comes
first.

– For example, say we had list a which has a sweetness value of 3 and size of 3 and list b which
also had a sweetness value of 3 but had a size of 2. The resulting BList would be a→ b

3. If the sizes are the same too then put a as the first list followed by b.

– For example, say we had list a which has a sweetness value of 3 and size of 3 and list b which
also had a sweetness value of 3 and a size of 3. The resulting BList would be a→ b

• BList addToEnd(BList a, BList b): Takes in two BLists, a and b, and adds b to the end of a.
Say list a is equal to q → f → w → e and list b is equal to h→ i. calling addToEnd(a,b) would result
in the list q → f → w → e→ h→ i

In addition to this, you will have the option to complete a BListComparator class (cross it out if you choose
not to use it.)

Remember to update instance values when you add elements to BLists.

Page 11

Data Structures and Algorithms Kartik Kapur

public class BList {
BNode f i r s t ; // F i r s t node
int sweetness ; //The sum of the sugar o f a l l BNodes in BList
int s i z e ; //The number o f BNodes in the BList
public BList (BNode a) {

this . f i r s t = ;

this . sweetness = ;

this . s i z e = ;
}

public BList addtoBList (BNode a , BList b) {

;

;
}

public BList addBLists (BList a , BList b) {

}

public BList addToEnd(BList a , BList b) {

BNode head = ;
BNode curr = head ;
while (curr != null) {

curr = curr . next ;
}
curr . next = ;

}
}

Page 12

Data Structures and Algorithms Kartik Kapur

public class BListComparator implements Comparator< > {

public int compare () {

;

;

;

;
}

}

Page 13

Data Structures and Algorithms Kartik Kapur

10 Arrrrghrays (25 pts)

Purplebeard and his lackey Turquoisenail are sailing the 10 seas. In order to sail well, they want to be able
to create a map. They managed to create their square map, but Turquoisenail tripped and put it through
a paper shredder. They managed to store the scrap images into a 1d array, but they need to piece it back
into an NxN map. You are lucky because on each piece you have the longitude and latitude written down.
Write a short program to help put the pieces back together. The pieces should be as follows:

0,20 10,20 20,20

0,10 10,10 20,10

0,0 10,0 20,0

In the upper left corner of the table, 0 is the longitude and 20 is the latitude.

For this problem you have access to only arrays

a For the first part of this problem, make a Piece class that store longitude and latitude.

public class Piece {

;

;

public Piece (int x , int y){

;

;

}
}

Page 14

Data Structures and Algorithms Kartik Kapur

b The next part of this problem is take the Pieces in the given 1D Piece array, where Pieces are in no
particular order, and put it into a 2D array where each row filled with Pieces that have the same
latitude.

public Piece [] [] groupByLat (Piece [] p){

int width = (int) ;

P iece [] [] latGroup = new Piece [] [] ;

for (int i = 0 ; i < ; i ++){

for (int j = 0 ; j < ; j ++){

i f (latGroup [j] []==){

;
break ;

}
else i f (){

int counter ;
for (counter =0; < p . length −1; counter++){

i f (){
break ;

}
}

= ;
break ;

}
}

}
return latGroup ;
}

Page 15

Data Structures and Algorithms Kartik Kapur

c Our goal is to now to complete the process of taking in a 1D unsorted Piece array and transform it
such that it becomes a sorted 2D array as shown on the first page of this problem (longitudes increase
from left to right and latitudes increase from down to up). To complete this problem you have the
following methods.

• groupByLat(Piece[] p): From part b, takes in a 1D Piece array and converts it into a 2D Piece
array where Pieces share a row if they have the same latitude.

• sortbyLat(Piece[][] p): Takes in a 2d array of Pieces and returns it sorted in the correct order such
that the row that contains the smallest latitudes is at the 0th index.

• sortHalfLong(Piece[] p): Takes in a 1D array of Pieces and half sorts them all by longitude. In
this problem, the term half sort means that the array is fully sorted except the first half of the
sorted array is switched with the second half of the sorted array. For example:
say we have an array [9, 2, 4, 0]. This array sorted would be [0, 2, 4, 9]. This array half sorted would
be [4, 9, 0, 2] since the first half of the sorted array, [0, 2], would be swapped with the second half,
[4, 9].

public Piece [] [] s o l v ePuzz l e (Piece [] s c a t t e r e d){

}

Page 16

	(Vitamin) C what’s going on? (4 pts)
	Errrrr…..er: (5 pts)
	Casts and Inheriting Broken Bones (12 pts)
	It’s always my de-Fault (5 pts)
	Osmosis (10 pts)
	Teenage Mutant Ninja Hurdles (8 pts)
	Riddle Me This (0 pts)
	A Test Within a Test (12 pts)
	Compearisons and other fruits (20 pts)
	Arrrrghrays (25 pts)

