
Data Structures and Algorithms Kartik Kapur

Amortized and Basic Runtimes

1 Amortized Runtime

Though we frequently want the worst case runtime, the more realistic case is that we want the average
runtime, this is called amortized runtime. Amortized runtime tends to choose a worst case input and then
calculating how long a series of operations would take on an input of that size For example, say we want to
calculate the amortized runtime when adding to an array, we can do it as follows:

(1 + 1 + 1...) + N

N
→ N + N

N
→ 2N

N
→ 2 amortized runtime is Θ(1) N is the size of the array

The above equation comes from the fact that N adding operations done in constant time and there is 1 call
to resize the array which takes N time. We divide this by the total amount of operations which is N -1 and
as a result we get Θ(1) as the amortized runtime.

It is imperative that amortized runtime not be confused with average case runtime. Average-case implies
that the input is ”average” whereas amortized runtime refers to the runtime of a worst case input in the
long run. Amortized runtime will become increasingly important when we start to discuss data structures.

2 Calculating Basic Runtimes

We have gone over what runtime is and the basic notations for it; now we are going to learn how we can
calculate the runtimes of some basic functions. Before we get started with actually calculating the runtimes,
we must define some formulas that will be helpful in the future.

1 + 2 + 3 + 4 + 5 + + n =
n(n + 1)

2
→ N2

1 + 2 + 4 + 8 + 16 + ... + N = N

When attempting to figure out runtimes, it is important that we realize what we are trying to find the
runtime in terms of. When there are multiple variables in play, we want to be explicit on what the running
time is scaling to. Usually, we scale in reference to an input array (or other data structure) size, some
number, or the length of some string. Now that we know some basic formulas, let’s attempt to figure out
some runtimes. Let’s look at the following function:

1 pub l i c void h e l l o (i n t n){
2 f o r (i n t i = n ; i > 0 ; i = i /2){
3 System . out . p r i n t l n (” He l lo ?”}
4 }

The running time for the above method would be log(n). This is because the problem is divided by 2 each time. The i in the

for loop will start off as n →
n

2
→

n

4
... → 1 leading to log2(n) amount of iterations which simplifies to Θ(log(n))

Let’s look at another problem, this time with while loops:

1 pub l i c void ptTwo(i n t [] a r r){
2 i n t i = 0 ;
3 whi l e (i < ar r . l ength){
4 i ++;
5 }
6 }

Page 1

Data Structures and Algorithms Kartik Kapur

The running time for the above method is n. This is because you are doing 1 iteration for each element of the array. Since

there are N elements, you do N iterations.

Page 2

	Amortized Runtime
	Calculating Basic Runtimes

