
Data Structures and Algorithms Kartik Kapur

Data Structure Design Questions

1 Kartikland: The Happiest Place in the World

You are a ticket ripper at the happiest place in the world, Kartikland. Each family in your land can rip
exactly one ticket, no more no less. Additionally, you want to rip the tickets of younger people before older
ones, after all, Kartikland is a place for young ins to drag their parents to spend lots of money. Families
may attempt to get around this by sending family members with tickets, but it is up to you, the brave ticket
ripper to prevent them from getting more than one ripped ticket. You are provided the familial connections
of all families in whatever representation you would like. You should be able to rip the tickets of all people
in O(N) time where N is the number of people in line to get their tickets ripped.

1.1 Solution

Use a modified Weighted Quick Union With Path Compression to store family relationships. Create a
wrapper class for each person in line and store a pointer to their corresponding Weighted Quick Union with
Path Compression. When reaching a person in line, check their family Weighted Quick Union With Path
Compression. If the root is marked do not rip their ticket, otherwise rip the ticket and then mark the root.

2 Sweet Tooth

Pretend that you are the owner of a Sweet Company. Your company makes three sweets- popcorn, candy,
and ice cream. In addition to this, each Sweet Category has their own sub categories. For example, you
can have Vanilla Ice Cream, Chocolate Ice Cream, Banana Ice Cream etc. Each Sweet has a total of N
sub categories. You know how much money each sub category will yield- assume that the money each sub
category will yield is unique.

As an owner trying to make a profit, you want to get lots of money; however, you can only make one
item a day, and you only have M days (where M< N). Your strategy is to pick the sub category of food that
will provide the most money on and then create it that day. You have 2 restrictions though.

• On any 2 consecutive days, you cannot pick items that come from the same Sweet Category. For
example, you cannot create an item from Ice Cream one day and the next day pick another item from
ice cream. This is enforced until the other 2 Sweet Categories are depleted.

• Once you make a subcategory, you cannot make it again. For example, if you make Banana Ice Cream
one day, you can never again make Banana Ice Cream.

Utilize Data Structures that we have discussed earlier to create an algorithm that will allow you to pick the
most profit while following the above constraints. You must take no longer than Mlog(N) to pick all the sub
categories of Sweets you will make. Hint: You cannot simply put everything inside 1 Priority Queue.

2.1 Solution

We will build a maxheap for each category, where the root of each heap will be the maximum profit sub
category.

1. On the first day we perform a removeLargest operation on the maxheap with the largest root. We
keep track of the maxheap that this item is removed from

2. We then perform a removeLargest operation on the heap with a larger root out of the 2 heaps that
were not picked in the prior step.

3. We continue step 2 until we reach M days.

Page 1

Data Structures and Algorithms Kartik Kapur

3 Min-nie Mouse and Max-xie Mouse

Use or modify a data structure or set of data structures to do the following operations in the provided time:

• insert: O(log(N))

• getSmallest: O(1)

• getLargest: O(1)

• deleteSmallest: O(log(N))

• deleteLargest: O(log(N))

3.1 Solution

We will fulfill all of our requirements by using a basic Balanced Search Tree. By construction, Balanced
Search Trees insert in O(log(N)) time and can also delete in O(log(N)) time. As a result, the only operations
that we need to account for is getSmallest and getLargest. We can trivially keep a pointer that keeps track
of the smallest element and the largest element. Whenever we delete the smallest element or update the
Balanced Search Tree to have a smallest element, we will update our pointer. We can do a similar process
for the largest element.

The reason why 2-3 trees are not used in the place of normal min-heaps or max-heap are really easy to
implement, as they can be visualized using arrays. This also saves a lot of memory compared to Balanced
Search Trees which can tend to be a bit expensive.

4 Oh Hi Mark

Imagine you are implementing a basic social media. You want to be able to check if 2 people are friends
in constant time. You also want to be able to see if you can see if 2 people have at least 1 mutual friend
in O(N) time where N is the total amount of people on the social media. Find an efficient solution to this
problem.
(A slightly more clear explanation)

4.1 Solution

To solve this problem, we will associate each user with a weighted quick union with path compression. To
check if 2 people are friends, we would go to one of the users and do a simple find operation. This would
take almost amortized O(1) time. To see if people have a mutual friend, we would need to go through each
one of the first person’s friends and see if they are friends with the second person. We would perform find
in each one of the first person’s friends. This upperbounds the work by O(N).

An interesting way to solve this problem is a more algorithmic approach. You can compute a unique
prime number for each person on your social media upon construction. To find N prime numbers takes
Nlog(log(N)) time. This would be faster than the weighted quick union with path compression implementa-
tion as we would construct a data structure for each item, which would take O(N2) time.

In addition to the associated prime number, each person would have a ”friend product” attribute which
would be the product of all of it’s friends’ primes. To check if two people are friends we can just divide the
friend product of one person by the prime number associated with the other. If it the result is an integer,
we know that they are friends, if not, they are not friends. To see if two people have mutual friends, we will
find the greatest common divisor using Euclid’s Algorithm. This will take O(log(min(a, b)) where a is the
friend product of the first person and b is the friend product of the second person.

Page 2

 https://www.youtube.com/watch?v=EfeacZ2fuS8

Data Structures and Algorithms Kartik Kapur

5 Colise-Yum

You are the rich Roman Emperor Jewelius Caesar. You want to build arenas (possibly more than one) so
your subjects can watch gladiator duels and eat wild boars.

• You have V locations where you can build arenas and it costs vi denarius’s to build an arena in the
ith location.

• Additionally, any location that does not have an arena must have a path to an arena. You are provided
a set of roads, denoted by E, that you can build between any 2 locations i and j, along with their cost
denoted by eij .

Find or modify an algorithm that will minimize the amount of denarius’s your kingdom will spend while still
fulfilling your constraints.

5.1 Solution

Essentially, this can be thought of as a graph problem where we want to ”mark” nodes and have nodes
either be connected to a marked node or be marked themselves, whichever is cheaper. To do this, we create
a graph with one vertex per location with edges between them corresponding to the cost of building a road
between them. The graph with vertex weights would look as follows:

To account for the vertex weights, we will add one dummy node and connect it to every single location.
The weight of the edge dummy node to any vertex vi would be the cost to build in the location vi. Now
we simply run Kruskal’s or Prim’s and we will get a valid solution. Below is a picture of the original graph
followed by a picture of the graph with the included dummy node.

6 Land Lubber? Sea Lubber? Air Lubber? Just Lubber

You are an avid traveler who wants to travel between the 2 cities in your country which consists of V cities.
To go between these cities you have decided that you can narrow down your modes of transportation to
dinghy sailing, gliding, and unicycling. For every city in the country, you are given a list of cities that you
can get to- this list remains constant regardless of which mode of transportation you pick. The set of all

Page 3

Data Structures and Algorithms Kartik Kapur

sailing costs is labeled as Es, the set of all gliding costs is given ans Eg, and the cost of all unicycling costs
is the set Eu.

Sadly, you get sea/air/landsick quite frequently so you cannot take the same mode of transportation
consecutively- in other words you cannot go into city i with unicycling and leave unicycling. Find an
algorithm that computes the fastest route from city i to city j with your constraints.

6.1 Solution

Say our original graph is G. Make three copies of the graph, one for each mode of transportation- let’s label
the graph for sailing Gs with vertices denoted as vs, the graph for unicycling as Gu with vertices vu, and the
graph for gliding as Gg with vertices vg. The cost to travel between 2 cities can be thought of as a directed
edge between these 2 cities. For example, in the below, we would like to find the route we should take from
1 to 3 (On the edges, U stands for the unicycle cost, G for the gliding cost, and S for the sailing cost) .

• For all edges (u,v) in Eg create an edge between ug and vs as well as an edge between ug and vu. The
weight of this edge should be the cost to glide from u to v.

• For all edges (u,v) in Es create an edge between us and vg as well as an edge between us and vu. The
weight of this edge should be the cost to sail from u to v.

• For all edges (u,v) in Eu create an edge between uu and vg as well as an edge between uu and vs. The
weight of this edge should be the cost to unicycle from u to v.

Create a dummy start node, ireal that connects to ig, is, and iu with a weight of 0. Additionally create
a dummy end node, jreal that connects to jg, js, and ju. We run dijkstra’s starting at ireal and get the
distance to jreal. The reason that this algorithm works is that we only connect one vertex to another if any
edge coming out of it will not have the same mode of transportation. Additionally, the shortest path will be
returned because we are just running Dijkstra’s on this expanded graph. Below is how the new graph would
look along with the solution.

Page 4

Data Structures and Algorithms Kartik Kapur

7 National Bongoola Association

You are the coach of a prestigious Bongoola team. Your job as coach is to make sure that, at any given
time, the best players on your team for each positions are on the field. Bongoola, being a great community
team sport, invites all people of the community to join. Each player will be assigned a position that they
can play- there are a total of M positions- and a unique team number. For this problem, we will use N to
be the total amount of people on your team and P to be the people signed up for a certain position.

You have your starting M players, but as the game progresses, you will need to replace them. You will
base your replacement of people using the bodacious factor. During the game, only 1 player’s bodacious
factor goes down, and once they are benched, their bodacious factor doesn’t change. Every Z minutes, 1
player on the field will have their bodacious factor decrease by some unknown amount and you will be able to
replace the player if needed. Once the next eligible player’s (a player who plays the same position) bodacious
factor exceeds the current player, they are considered a better choice. You are guaranteed that only 1 of the
players at a time will need to be replaced. Finding all the players on your current lineup should take Θ(M)
time, changing a player’s bodacious factor should take Θ(1) time, replacing a player should take Θ(log(P))
time, and putting a new player in the current lineup should take Θ(1) time.

Write a detailed description of what data structures you will use to make the operations stated above
run in the provided time. State any assumptions you need to regarding anything (no you cannot assume
that everything is done by some magical warlock).

7.1 Solution

First thing is first, you will need a Player class with a bodacious instance variable. You will then create
a HashMap which will hash based off the unique player id’s. Because of the HashMap, we can change the
bodacious factor of a player in Θ(1) time. For this part of the problem, you need to state that you assume
that there is a good hashcode and good spread- if this was not the case, it would be possible to have Θ(N)
runtime.

To represent the players who can play in a certain position, we will use a priority queue with the priority
equal to players’ bodacious factors. The top player in the priority queue will be in the current lineup. Once
their bodacious factor is less that one of their children, we will sink the player. This results in Θ(log(P))
time to replace a player (if they truly need to be replaced).

Now it gets a little tricky. Since there are M positions, we cannot disregard the amount of positions as
a constant. To get around this, there are three possible (intuitive) solutions:

The first solution involves realizing that there are as many priority queues as there are positions. You
can create 2 M sized arrays- one array will be the current lineup and the other array will be composed of
priority queues in the same order. You would modify the Player class so that it has an instance variable
that stores the index that it would go to when replacing or being replaced. Accessing an array would occur
a maximum of 2 times which would make the runtime Θ(1) time.

The second solution keeps track of the lineup with an M sized array and players have an instance vari-
able that points to their priority queue. Instead of having a separate array for all the priority queues, players
have an instance variable equal to the index in the array that they belong to. When a player needs to be
replaced, the new maximum item in the priority queue would be put in their index of the current lineup array.

The third solution would be slightly more complicated. You can create 2 HashMaps, again, one of the
current lineup and one of the priority queues. However, since the hashing of priority queues is not straight-
forward, we would create a wrapper class for priority queues and create some instance variable that was
unique to each priority queue. For example, we could have a string that would be the name of the position
it represents. We then hash the M wrapper classes. Accessing a priority queue would take Θ(1) time if we
assume a good hashcode. If good hashcode was not assumed, then it would take O(M) time

Page 5

Data Structures and Algorithms Kartik Kapur

The difficulty in this solution (specifically when you attempt to hash the lineup) is that players who re-
place others would need to have the same hashcode. To do this you could make the key in this HashMap
the position of a player and the value is the specific player. Change the equals method in the current lineup
hashmap so if 2 players have the same key they are considered equal. This means when you add a new
player in, they will automatically replace the player in the corresponding position. Replacing the item in
the HashMap would take Θ(1) time since we know where it hashes to.

8 Future-Roaming

You are a croissant delivery boy in the 31st century. You want to deliver your croissants as quickly as
possible; however, because you lost your client’s addresses and they live all across the galaxy, so you don’t
want to go door to door. You have the phone numbers of all the people who ordered croissants from
you, so you will attempt to use this to figure out in where you should go. Each phone number is about
100000000000000000000000 digits long and you have a total of N clients. You will use the following infor-
mation about telephone numbers to help:

1. The sector code (the leftmost 10 digits) will allow you to figure out which sector a client is in. On
average, there are a total of

√
N households you need to deliver to in the sectors.

2. In the 31st century, telephone numbers have a cool feature where the difference between the last 4 digits
of any 2 telephone numbers in the same sector is equal to the distance between their two corresponding
households.

3. You know the address of 1 of the houses you need to go in each sector.

You want to go to sectors based off how many of your clients are in them and how close it is . If a sector
has 5 clients and is 2 Megadistances away, it is more appealing than a sector that has 1 client and is 1
Megadistance away. If a sector has 6 clients and is 2 Megadistances away, it is less appealing than a sector
with 9 clients and 3 Megadistances. If a sector has 4 clients and it is 2 Megadistances away, it is considered
equal to a sector that has 2 clients that is 1 MegaDistance away, at this point, you just pick which one to
go to randomly . You will deliver to all the households in that sector before going to the next sector. You
also know how many megadistances are between each sector, and you can assume that you will start at a
location that is equidistant from all the sectors.

Provide an implementation where figuring out which households are in which sector in Θ(N) time, fig-
uring out the distance between a house and all the other houses in a sector, must take, on average, O(N)

time, and delivering croissants to all the households on average, O(N
3
2 logN) time.

Assume that the time it takes you to walk 1 Minidistance (inside of a sector) is the same amount of time
it takes your spaceship to travel one Megadistance (between sectors). Justify why your design works in the
given time.

8.1 Solution

What you first want to do is run a special version of MSD on all the telephone numbers. This version of
MSD would stop sorting after we get 10 iterations, since we would have sorted by the 10 most significant
digits of each telephone number, and have all the numbers sorted by sector. We are using a radix sort and
we are not doing it all the way through.

Additionally, since we are performing only a partial radix sort, our work done will be O(3*N) which is
just O(N), fitting our constraint for figuring out which houses are in which sector.

Page 6

Data Structures and Algorithms Kartik Kapur

We will denote the amount of households in a sector by the letter T.

For each sector, we will create a graph with a total of T vertices. Following this, for each household in
the sector, we will find the absolute value of the difference between it and every other household in the
sector.

After finding the absolute value of the difference between the 2 vertices, we would connect these two house-
holds with an edge of that weight. In (somewhat detailed) pseudocode, the above looks like:

1 f o r (i n t i = 0 ; i < number o f households ; i ++){
2 f o r (i n t k= i + 1 ; k < number o f households ; k++){
3 i n t d i s t anc e = abso lu t e va lue (l a s t 4 d i g i t s o f i ’ s t e l ephone # l a s t 4 d i g i t s o f k ’ s #);
4 addEdge o f weight d i s t anc e between i and k ;
5 }
6 }

On average, there are N households per sector. This means that for each household in the sector, on average,
we perform N comparisons to create edges between it and another household. Our recurrence relation would
look as follows:

√
N∑

i=1

√
N − i =

√
N +

√
N − 1 +

√
N − 2...

√
N −

√
N + 1 = O((

√
N)2) = O(N)

We will denote the amount of sectors with the letter M

Following this, we will create a graph with all the M sectors; however, the “weight” of each edge would
be equal to the Megadistance to the sector / amount of deliveries to make in that sector, essentially reducing
this problem to “which path maximizes the amount of Megadistance/amount of deliveries”. This means
that the more deliveries we have in a sector, the smaller the value, which means in Dijkstra’s it would be
prioritized more.

We would perform Dijkstra’s from the sector on the graph of sectors and at we would perform Dijkstra’s
at each sector that we stop in. In the average case, there are a total of N sectors and N households per
sector. The Dijkstra’s between the sectors will take O(Nlog(N)) and each sector, running Dijkstra’s will take
O(Nlog(N)) time. Since, we know that there are a total of N sectors, we can multiply our sector Dijkstra
runtime by N getting O(N ∗Nlog(N)) = O(Nlog(N)). We can add the terms to get the following:

O(Nlog(
√
N)+

√
Nlog(

√
N)) = O(Nlog(

√
N)) = O(Nlog(N

1
2) = O(Nlog(N

1
2)) =

1

2
Nlog(N)) = O(Nlog(N))

Easy Mistakes to Make (less or no credit given for these solutions)

1. Attempting to perform full MSD or any form of LSD would be incorrect. Our digits are simply too
large to perform either one efficiently. The reason why a truncated version of MSD works is because we
fit the problem so that only the first digits were considered (essentially making it a constant factor).

2. Constructing a Trie would not work for seeing which numbers contain the same 10 digit prefix because
we would have to go all the way down the Trie to see the last few digits that we need.

3. Not figuring out that the weight of an edge should be changed from just the distance or adding
up/subtracting the amount of people in a sector and the distance. When adding the 2 values, it is
impossible to know if you’re dealing with a greater distance or amount of deliveries. When subtracting
you could end up with negative edges/cycles. The ratio that we created allows us to properly scale the
impact that the amount of people in each sector has on the algorithm.

Page 7

	Kartikland: The Happiest Place in the World
	Solution

	Sweet Tooth
	Solution

	Min-nie Mouse and Max-xie Mouse
	Solution

	Oh Hi Mark
	Solution

	Colise-Yum
	Solution

	Land Lubber? Sea Lubber? Air Lubber? Just Lubber
	Solution

	National Bongoola Association
	Solution

	Future-Roaming
	Solution

