
Data Structures and Algorithms Kartik Kapur

Disjoint Sets

1 The Disjoint Sets:Quick Union and Quick Find

One problem that comes up frequently in Computer Science, and the world in general, is ”are two things
connected?”. This problem is found in social networks (think mutual friends), power grids, and more. We
will refer to this problem as the ”Disjoint Set Problem”. The API for this problem would be

1 void union (i n t p , i n t q) ; \\ connects two i n t s p and q .
2 i n t f i n d (i n t p) ; \\ the parent / value a s s o c i a t e d with a c e r t a i n index (p) .
3 boolean connected (i n t p , i n t q) ; \\ are two int ’ s , p and q , connected .
4 i n t count () ; \\amount o f va lue s .

The easiest way to approach this problem would to use some sort of array, we’ll use arr as our array variable.
Where the index of the array is the item we are looking at and the value is the ”set” that it is in. In the
naive implementation, when checking connected(a,b) we just check if arr[a] == arr[b]. To make sure that
this is always the case, whenever we call union(a,b), we will check if the two values are the same. If the
values are the same, nothing would need to be done; however, if they are different, that means we will need
to change all the items in arr that have the value of a to the value of b. Let’s take the following example,
the first image is of the initial array, the second is one where the call union(2, 4) has occurred

Analyzing this code, we can recognize that union would take N time in worst case because you would
have to go through O(N) elements in the array to connect the two. Find would take O(1) because you
would simply return the element associated with it. This data structure is essentially a linkedlist in terms
of connectivity. This is decent, but we can do a lot better. Because find() takes such little time, we will call
this data structure Quick Find

So let’s say we wanted to speed up the union method- we would use a similar data structure called a
Quick Union . The underlying data structure would also be an array, and the value of each index would
be its parent; however, our implementations of find, union, and connected would be quite different. Before,
find would immediately return the value of the parent; however in the Quick Union Implementation, find
would start at one item and go to its parent- this process would keep repeating up until the the parent of
the node is itself, in other words, it is the root. To implement union, we would use find to find the root of
the items, then all we would do is change the value of the root to be the value of the other root. Below is
the basic java code for find and union.

Page 1

Data Structures and Algorithms Kartik Kapur

1 p r i v a t e i n t f i n d (i n t p)
2 {
3 whi l e (p != id [p]) {
4 p = id [p] ;
5 }
6 return p ;
7 }
8 pub l i c void union (i n t p , i n t q){
9 i n t pRoot = f i n d (p) ;

10 i n t qRoot = f i n d (q) ;
11 i f (pRoot == qRoot){
12 return ;}
13 id [pRoot] = qRoot ;
14 count−−;
15
16 pub l i c boolean connected (i n t p , i n t q) {
17 return f i n d (p) == f i n d (q) ;
18 }
19 }

Note how only one of the values changed. Intuitively, this makes us feel that Union would be faster, but
exactly how much faster? Well let’s look at a diagram of how exactly QuickUnions are formed. Let’s use
the previous table as an example.

→
We can see that this forms a tree-like structure. This means that in worst case, the runtime for union
and find is the Θ(N); however, the average runtime for both these functions is Θ(log(n), because that tends
to be the height of a tree. Because the connections are arbitrary, the height can, at times, make the structure
essentially a linked list. We’ll tackle how to solve this problem in the next section.

2 Disjoint Set Improvement: Weighted Quick Union

To solve the prior problem of having ridiculously large tree heights, we will implement a data structure called
the Weighted Quick Union . A Weighted Quick Union follows the same pattern as the Quick Union; how-
ever, we keep track of the size of the two trees being connected- we can do this with a separate ”size” array
or store it inside the node. The root of the smaller tree is then connected to the root of the larger tree-
becoming its child- this ensures that the height of the tree will be no bigger than log2(n) or lg(n). This
makes it so union takes lg(n) time in the worst case, a substantial improvement over N .

Page 2

Data Structures and Algorithms Kartik Kapur

→
Though the Weighted Quick Union is good, we can make it even better by using a strategy called path
compression. This strategy will provide us with a very fast find and union take nearly constant time.
To implement this strategy, inside our find method, every node that you find on the way will connected
directly to its current root. Unlike Quick Find, where we connect everything in union, we connect every-
thing inside the find method- this means that we will not go out of our way in order to connect things to
the root. We will go through a full example of constructing a Weighted Quick Union with Path Compression.

→
We connected all the nodes. 2’s parent became 1, 6’s parent became 4, and 5’s parent became 3. The node
that we chose to be the root was arbitrary in this case.

Page 3

Data Structures and Algorithms Kartik Kapur

→
In this case, we first unioned 6 and 5. To do this, we would find the root of 6 and the root of 5 and
then connect them. This would be 4 and 3 respectively. The decision for which one is the root is once again
arbitrary since both trees are of the same size. Up until now, this is just a normal Weighted Quick Union.

Next we perform a union operation for 2 and 5. We once again find the root of 2 and 5 and connect
them. The root of 2 is just 1, its direct parent, so there nothing that changes. However, for 5, the root is not
its direct parent, so we make its parent the parent of its parent. In this case, that node is the root; however,
in larger trees, all the nodes on the way to the root would have their parent change to be the parent of the
parent over and over until the root is reached. Since the tree rooted at 4 is larger than the tree rooted at 1,
we make 4 the root of the overall tree.

For the final operation, we are performing a find operation. We want to see if 6 and 2 are connected. To
do this, we will find the roots of each of them. Since we are going up the tree, it is only natural to change the
parent of the nodes along the way, if their parent is not the root. So as a result of this connected operation,

Page 4

Data Structures and Algorithms Kartik Kapur

we change the parent of 2 to be 4 from 1 because its direct parent is not the root.

We now can see the drastic difference between our data structures and the improvement that we got by
writing a few lines of code.

Page 5

	The Disjoint Sets:Quick Union and Quick Find
	Disjoint Set Improvement: Weighted Quick Union

