
Data Structures and Algorithms Kartik Kapur

Hashtables

1 Hashtables

Say we wanted to store items in an array like structure, where our key has some correlation with it’s index;
however, what if our key is not an integer, say a String, or Animal? Or what if we have integers with huge
differences like 1 and 100000000. The first case would be impossible to achieve in an organized and efficient
fashion in an array because we would have no idea where keys would be- what index would an Armadillo
be at? The second case is possible; however, the memory that would be taken up would be enormous, and
it would be unfeasible to use so much space for only 2 items. These above 2 problems are the motivation
behind hashing.

Hashing is the process of creating a number that represents some key. Usually the hashed representa-
tion of a key has to do something with an attribute or set of attributes of the object that is being hashed. It
is not always trivial to make a good hashing function; however, given enough thought, we can hash names,
numbers, food- the possibilities are endless!

Usually, Hashtables are represented by arrays, which means that when we hash some key, we should
get some index in the array- each index in our array will be referred to as a bucket and we will store keys in
the bucket that they hash to. Let’s start with a basic example where our key is some integer and M is the
amount of buckets we currently have in our Hashtable. 1

1 key%M

This hash function, like all hash functions, will return some integer between 0 and M - 1. We can use the
number returned by this function to map a particular key to some index in the array. Let’s try it out on an
array of size 5, so M =5, with the calls in the following order: 0,11, 24, 103, 33.

At this point, we have inserted 0, 11, 23, and 104. But wait there’s a problem now, 33 and 103 hash to the
same index in the array. How can we fix this? Well instead of storing 1 element within the array, we can
instead store some data structure, such as linkedlist at each index, this will allow us to store more than 1
element per index.

1Note usually in hashing functions, we perform some arithmetic on the key before moding it, so that our encryption is more
secure.

Page 1

Data Structures and Algorithms Kartik Kapur

Now that we can take care of more than 1 element, we should be good to go right? Let’s try inserting the
following keys: 13, 23, 43,53,63.

Do you see the problem? If we keep inserting items that have a remainder of 3 when divided by 5, our
runtime to get or put an item would be no better than a linkedlist, we would just be using more memory
because we have an array too. In order to fix this, while inserting items, we should have some clause that

if
N

M
≥ some number, where N is the total amount of items we have and M is the amount of buckets, we

resize our array. This basically means if the average amount of items per bucket is greater than or equal to
some number we resize the array. After resizing our array, we rehash all of our items since the amount of
buckets has changed. Then , we should get a more even distribution. The question now is how should we
increase our buckets? Let’s consider the following options:

1 M = M ∗ 2
2 M = M + 1000

When considering which resizing factor we should choose, we want to make sure that we do not need to
resize too frequently because resizing is a relatively expensive operation. At first glance M = M + 1000 may
seem tempting; however, it is important to realize that the number of buckets being added is not increasing
with N as it grows larger. This means that, in the long run, the 1000 will not be substantial enough to make
the resizing factor negligible. The best resizing option we have is M = M ∗ 2 since the amount of buckets
that we add at each resize operation grows with the amount of buckets we currently have.

Let’s analyze the runtime of Hashtables now. First let’s consider the average case for all these functions. On
average, we have a Hashtable with O(N/M) = O(L) items per bucket. This means that, on average, we a
Put or Get operation will take O(L) time where L is the load factor. This is because the amount of items
we would need to look through would be upper bounded by O(L) as we would only look through 1 bucket.

Let’s now consider the the amortized case. To do this, we will revist the average case. If we can ensure that
the average amount of items per bucket, or L, is small, essentially constant, then we would only have to do a
constant amount of work to find any given item. This means that Get and Put each take Θ(1) amortized time.

Now let’s discuss the worst case runtime for Hashtable. In a worst case for Put, we would need to re-
size the array and rehash all the items, which would take Θ(N) time. There is also another case for which
worst case runtime can occur. If we have a bad hashing function, it could be exploited so that, with a series
of inserts, everything hashes to the same bucket, essentially making one bucket act like a huge LinkedList
while the other buckets have nearly nothing in then. This would make both Get and Put take O(N) time
as we would need to check the entire bucket to see if an element is already in the Hashtable. This is why it
is imperative that a good hashing function is used in a Hashtable.

To use Hashtables, we need to use the following functions.

1 pub l i c i n t hashcode (){
2
3 re turn some hashcode ;
4 }

Page 2

Data Structures and Algorithms Kartik Kapur

5 pub l i c boolean equa l s (Object obj){
6
7 re turn i f obj equa l s your cur rent ob j e c t based o f f a f a c t o r o f your choos ing
8 }

One key idea to remember when analyzing hashing functions is that any 2 items that are equal should hash
to same bucket. This means that if a.equals(b) then a.hashcode() must equal b.hashcode(). The implication
of this is that if you override the equals method, you must also overwrite the hashcode method. Another
important characteristic of hash functions is that they should provide a relatively even distribution meaning
that one bucket should not be hashed to a disproportionate amount compared to other buckets.

Page 3

	Hashtables

