
Data Structures and Algorithms Kartik Kapur

Classes, Types, and Typing

1 Classes and Objects

Java is an Object-Orientated Language in which every file must a class or interface. Functions within these
files is called methods. Classes in Java are powerful because we can create a skeleton for many different
objects instead of repeating ourselves. Let us take an example of 2 wildcats Jeremy and Josephine.These
two wildcats have all the exact same characteristics except their name is different. The naive approach to
representing Jeremy and Josephine would be to make a separate class for each one. However, Java lets us
do something much better, we can create a new instance of the class instead of just rewriting it. Here is an
example of how to instantiate 2 objects.

1 Wildcat jeremy = new Wildcat (” Jeremy ”) ;
2 Wildcat j o s eph ine = new Wildcat (” Josephine ”) ;

We now know that we can instantiate classes; however, we can have various types of data and methods inside
of our classes. Below is a list of what we can store inside of classes

• Instance Variables: These are variables that are different for each instance of a class.

• Static Variables: Static Variables are variables that are common to all instances of a class. This
means that if the static variables changes value in one instance of the class, it will change in all in all.
instances.

• Instance Method: In order for an instance method to be called, you must call it from an instance
of the object.

• Static Method: Static methods can be called directly through the class

• Constructor: The constructor is a ”method” that is used in order to instantiate a class. Whenever
you instantiate a class, the arguments that are passed in are what get passed into the constructor.
•Important note: Static Methods cannot have any references to instance variables or methods.

However, instance methods can reference static variables and methods. More on this in the next

lesson.

Below is an example class, see if you can identify all its components.

1 pub l i c c l a s s Human{
2 pub l i c i n t weight ;
3 pub l i c s t a t i c i n t joy = 100 ;
4 pub l i c Human(i n t mass){
5 weight = mass ;
6 }
7 pub l i c void eat (){
8 weight +=5;
9 System . out . p r i n t l n (” I l ove ea t ing ”) ;

10 }
11 pub l i c s t a t i c void play (){
12 System . out . p r i n t l n (” I have” + joy + ” happiness ”) ;
13 }
14 }

Weight- Instance Variable, Joy- Static Variable, public Human- constructor, eat- instance method, play- static method.

Page 1

Data Structures and Algorithms Kartik Kapur

2 Static Typing vs Dynamic Typing

As we foreshadowed earlier, there is a difference between when static methods can be used as opposed to
Instance (dynamic) methods. Let us take the example of the human class from 1.1. This is a possible series
of calls:

1 Human . play () ;
2 Human k a r t i k = new Human(5) ;
3 k a r t i k . eat () ;
4 k a r t i k . play () ;

Note that before we called kartik.eat(), we had to instantiate kartik to be a human. Another important note
to make is that we can still call play on kartik even if play is static. If we attempted to call Human.eat() we
would end up with a compilation error.
So far, we have not had any difficult problems. Rest assured, in a later lesson, this concept will become

much trickier. Make sure that you understand the difference between Static and Dynamic typing for now.

3 Primitives and Reference Types

In Java, a variable can be either a Primitive or a Reference type. There is a concept of bits, which is not
discussed too much in 61B, but the main concept is that bits are a unit of measurement to see the amount
of space that something takes up. Whenever you declare a variable, of either type, Java sets aside some
memory for it.

The Golden Rule of Equals is given two variables x and y, if we set y equal to x, all the bits from x
are copied to y.

1 y = x ;

In Java there are 8 primitive types, below I have listed the types, a brief description, and how many bits
they use.

• byte - a unit of data that is 8 binary digits long. 8 bits.

• short - An integer from -32,768 to 32,767. 16 bits

• int - An integer from -2,147,483,647 to 2,147,483,648. 32 bits.

• long - An integer from -9,223,372,036,854,775,807 to 9,223,372,036,854,775,808. 64 bits.

• float - From 3.402,823,5 E+38 to 1.4 E-45. 32 bits.

• double - A decimal number. 64 bits.

• boolean - True or False value. 1 bit.

• char - A sole character. 16 bits.

If something in Java is not a primitive then it must be a reference type, or the instance of an Object.
Whenever you instantiate an object, Java stores it’s address in 64 bits. This has an incredibly important
consequence. If we take our prior example where we set y equal to x, copying the bits of a reference type
would not result in creating a duplicate object like it would for primitives, rather we would just copy over
the address to the object. This is a very important distinction to make.

Page 2

	Classes and Objects
	Static Typing vs Dynamic Typing
	Primitives and Reference Types

