
Data Structures and Algorithms Kartik Kapur

Inheritance and Generics

1 Inheritance

Inheritance is the idea that a specific object can have all the behaviors and properties of its parent. In order
for something to inherit from a parent, you must use the extends keyword. For example:

1 c l a s s Superhero { . . . }
2 c l a s s Batman extends Superhero { . . . }

In the above example, the Batman class will have all the attributes of a Superhero. Additionally Batman
will be able to have its own attributes. This leads us to a key point. The is-a relationship. The class that
extends a parents class ”is-a” the parent class (in this case Batman is a Superhero). However, a Superhero
is not Batman because the Superhero class does not extend Batman.

We know that when a class inherits from another, it inherits the methods, but a subtle point is that when
you instantiate the child class, an implicit call to super() is made in the child constructor as the first call.
This means that if the parent class has a constructor that takes in no parameters, its contents will get run
before the the child’s constructor. If you wish to run a parent constructor that has arguments, simply write
super(your arguments here). To call any other parents methods from a child’s method use super.parents
method name(parent’s method arguments);

We have gone over class Inheritance, now we will discuss interface inheritance. For interfaces, we use
the word implements instead of extends.

1 i n t e r f a c e Plumber { . . . }
2 c l a s s Mario implements Plumber { . . . }

Similar to a class, the interface creates an is-a relationship. That a class that implements the interface is-an
instance of the interface.

Though on the surface, it may seem that extending classes and implementing interfaces do the same thing,
they serve very different purposes, and it is important to see the distinctions. One of the biggest differences
is that when a class extends another class, it does not have to re implement any methods. Assuming you did
not have the same method signature in your subclass, calling a method will result in the parent’s method
being called without a compilation error. Interfaces on the other hand serve more as a blueprint for code
that needs to be implemented. The only exception to this rule is if a method in the interface is declared
with the default keyword and has a body. Another distinction between the two philosophies is that a class
can only extend from one class; however, it can implement multiple interfaces.

Now that we have gone over inheritance, we can bring back static and dynamic types. When we are
declaring a variable, the class on the left is the Static Type and the class on the right is the Dynamic type.
When declaring a variable, you must make sure that the item to the right is-a version of the item on the left
of the equal sign. This is a reference class for the next few examples

1 pub l i c c l a s s Fel low {
2 St r ing name ;
3 pub l i c Fel low (){
4 t h i s . name = ”I ’m nameless ” ; }
5 pub l i c void breathe (){
6 System . out . p r i n t l n (” Breathing no i s e ”) ;
7 }
8 }
9 pub l i c c l a s s P r o f e s s o r extends Fel low {

10 pub l i c P r o f e s s o r (){}
11 pub l i c void teach (){ System . out . p r i n t l n (” I taught ”) ; }

Page 1

Data Structures and Algorithms Kartik Kapur

12 }

Now let’s walk through a few function calls:

1 Fel low josh = new P r o f e s s o r () ;
2 System . out . p r i n t l n (jo sh . name) ;
3 jo sh . breathe () ;
4 jo sh . teach () ;

1st line creates a Professor whose static type is a Human, 2nd line prints ”I’m nameless”, 3rd line prints ”Breathing noise”,

4th line is a compilation error.

In the above example, josh.teach() gave us a compilation error because even though josh’s dynamic type is
a teacher, it’s static type is a human. When making a method call, Java checks to see if the method exists
in the static type, if it doesn’t it raises a compilation error. To get around this, we use a trick called casting.
Basically, when we know something the computer doesn’t we tell the computer we know what the object
really is. to make the above code work we would write

1 (P r o f e s s o r jo sh) . teach () ;

If however, the method does not exist in the casted type, we will get a runtime error. So be careful with
casting!

2 Generics

Let’s say that we want to have some unknown object be a variable inside of a class. Inside of the class header,
we can declare unknown types that we know will be variables. Take the following class as an example.

1 pub l i c c l a s s Dict ionaryItem<K, V> {
2 K key ;
3 V value ;
4
5 pub l i c Dict ionaryItem (K key , V value) {
6 t h i s . key = key ;
7 t h i s . va lue = value ;
8 }
9 }

It is not totally obvious why this would be useful, why use this when we can just have a normal class that
looks cleaner? The reason why can be seen below.

1 Dict ionaryItem<Str ing , Str ing> webster =
2 new Dict ionaryItem<Str ing , Str ing >(” Kartik ” , ”Kapur ”) ;
3 Dict ionaryItem<Character , Integer> numberDict =
4 new Dict ionaryItem<Character , Integer >(’a ’ , 1) ;

If we want to have different types of a Dictionary, we may not want to rewrite the whole class. This is why
generics are so useful.

Similarly, if we want to make just one method have a generic type, we can do that with a similar dec-
laration.

1 pub l i c s t a t i c <Key , Value> Dict ionary <Key , Value> add (Key k , Value v) { . . . }

The initial <Key, Value>refer to the Dictionary return value and tell us what types will be in the Dictionary.
The second <Key, Value>refers to the types that are the being passed in for the arguments into the method.
Generics can be tricky, so it is important to keep track of when and how you declare.

Page 2

	Inheritance
	Generics

