

Practice Final
This test has 13 questions worth a total of 200 points, and is to be completed in 180 minutes. The
exam is closed book, except that you are allowed to use one double sided written cheat sheet
(front and back). No calculators or other electronic devices are permitted. Give your answers and
show your work in the space provided. Write the statement out below in the blank provided and
sign. You may do this before the exam begins.

Points # Points

1 16 8 0

2 12 9 10

3 9 10 15

4 25 11 20

5 8 12 17

6 25 13 30

7 9

 Total 200

1. Starting this Test on a Positive Note (15 pts).
a) (4 pts) Give an example where Dijkstra’s would fail because of a negative edge weight

b) (4 pts) Give an example where Dijkstra’s does not fail with n negative edge weights. State
assumptions that you must make in order for this to work. If you have some method to make it
work, explain the method.

c) (4 pts) What is the least amount of negative edges (>0) that a graph can have and still have
Dijkstra’s work? What is the most amount of negative edges that we can have? State
assumptions that must be made

d) (4 pts) What is the smallest weight we can have and guarantee that Dijkstra’s will always
work, regardless of the graph’s construction?

2. Sorting and Fun (12 pts). We worked with a few various sorts. For each sort, provide the
runtime and give a brief description of what it does (how it sorts). Each questions is worth 4
points

 private static void dwarfSort(int[] ar) {

 int i = 1;

 int N = ar.length;

 while (i < N) {

 if (i == 0 || ar[i - 1] <= ar[i]) {

 i++;

 } else {

 int tmp = ar[i];

 ar[i] = ar[i - 1];

 ar[i--] = tmp;

 }

 }

}

 private static int[] waffle(int[] arr){

 int[] syrup = arr;

 for(int i = 1; i < arr.length; i++){

 if(arr[i] < arr[i-1]){

 arr[i] = arr[i] + 1;

 }

 }

 return syrup;

}

 //find the runtime of flapJackSort. Note that the

flip function is defined as follows flip(array, index)

and reverses the entire array up until that index.

public static int[] flapJackSort(int arr[], int n){

 for (int curr_size = n; curr_size > 1; curr_size--)

 {

 for(int choco = 0, chip =0; chip < curr_size;

chip++) {

 if (arr[chip] > arr[choco]) {

 choco = chip;

 }

 if (choco != curr_size - 1) {

 flip(arr, choco);

 flip(arr, curr_size - 1);

 }

 }

 }

 return arr;}

3. The Fruits of Your Labor (9 pts).

a) (3 pts) You own a trie that can hold many fruits; however, you want to save space so that your
neighbor doesn’t cut off your branches. Find how you make one modification (change, delete, or
add a letter) to one of the following 3 words “Apple”, “Peach, “Pear”. What modification can
you do to save the most space? Draw the resulting trie after your modification.

b) (3 pts) A wealthy CEO wants to encrypt all his secrets; however, he decided that he wants to
store all of his secrets within a flashy hashmap. But he doesn’t want a plain old hashmap, after
all, that could get hacked. To be different, he decides that, for any given day, a secret will hash to
different location than it would have the previous day. Is his idea valid? Provide your reasoning.

c) (3 pts) 2-3 Trees are known to be fast because they are self balancing and they have a nice low
level? Why don’t we just use 2-3-4 trees or 2-3-4-5-6 trees?

4. The Lavender Leopard (20 points).

You are a jewel thief starting at the entrance of a museum where all rooms are connected to each
other- that is a room is connected to every room besides itself; however, hall lengths may differ.
You are in search of the very expensive gem, the “Lavender Leopard”, the only problem is that
you have no idea what room it is in.
Your idea is to go to the room closest to the one you are in (excluding ones that you have already
visited) and then as soon as you find the gem, you will immediately exit the building, going
through the same rooms you did earlier; however, if there was a faster way to a room that is
closer to the exit, you will go that way.

a) (20 pts) Fill in the Museum class and following code to find the gem and then escape as
quickly as possible. You are guaranteed that the jewel will be in the building.

In the above example, you would travel to 1, then 2, get the gem, and go back to room 1 then the
entrance.

public class Hall {

 public final Room room1; public final Room room2;

 public final double length;

 public Hall(Room r1, Room r2, double length){

 this.room1 = r1; this.room2 = r2; this.length = length;

 }

 public Room r1(){return room1;}

 public Room r2(){return room2;}

 public double howFar(){return this.length;}

public class Room {

 public LinkedList<_________> adjacentHall;

 boolean beenTo = false;

 public boolean hasGem;

 public int order; //provides a definite ordering for the rooms, does not tell you the

location, but can be used as a reference point.

 public Room(int order, boolean gem, int rooms) {

 this.order = order;

 this.hasGem = gem;

 adjacentHall = new LinkedList<Hall>();

 for(int i = 0; i < rooms; i++){

 adjacentHall.add(null);

}}}

import java.util.ArrayList; //feel free to use these imports, if not it’s okay as well

import java.util.LinkedList;

public class Museum {

public int totalRooms;
public int totalHalls;

public LinkedList<______________________________> adj;

public Room entrance;

//Constructor

public Museum(Room[] rooms) {

 this.totalRooms = rooms.length;

 this.totalHalls = 0;

 adj = new LinkedList();

 for (___) {

 }

 entrance = ______________

}

//method for stealing from the museum

public void stealing() {

 ArrayList<Room> visited = new ArrayList<>();

}

//You are sneaking into the museum, attempting to find the jewel, this is the

hardest method of the class just because of sheer length.

public Room goIn(___________________________ visited) {

 Room r = entrance;

 boolean stolegem = false;

 while (___________________________________) {

 __

 __

 if (r.hasGem) {

 __

 break;

 }

 Hall minHall = __

 for (int i = 0; ______________________________________; i++) {

 Hall curr = __

 if (minHall __) {

 if (curr != null &&

 __)) {

 minHall = curr;}

 } else if (curr != null &&

 __ &&

 __) {

 minHall = curr;}}

 if (__) {

 r = minHall.to();

 } else {

 r = minHall.from();}}

 return r;}

//You have the gem now you are leaving. You can do this part without having done

the earlier method (there are no references to it; however, you should understand

what it is doing)

public void goOut(Room r, ArrayList<Room> visited) {

 int curr_lim = __);

 while (__) {

 Room closestroom = null;

 double dist = Double.MAX_VALUE;

 int currentlimit = ___________________________________

 for (int i = 0; i < _____________________________________; i++) {

 Room curr = visited.get(i);

 if (adj.get(r.order).size() < dist) {

 closestroom = curr;

 __

 __

 }

 }

 __

 }

 }

 System.out.println(“We outtie”);

}

b) (5 pts) What is the worst case runtime of stealing in terms of rooms (r) and halls (h)? Only
keep necessary terms.

5. Trick or Tree-t (12 pts). Mark true or false for the following problems, a brief justification is
required. Each question is worth 3 points

a) The fastest time for any comparison based can ever be is 𝛀(Nlog(N)) regardless of input.

True False

b) When looking through a binary search tree, if we are looking for a number of items between 2
elements, the best case runtime is Θ(N) because we will need to go through every single element
to see if it fits into our range?

True False

c) All valid left leaning Red Black Trees can become a valid Binary Search Tree by replacing all
red nodes with black ones.

True False

d) 2-3 Trees are faster than Red-Black Trees for most major operations because of the height of
the 2-3 tree is smaller than the height of a Red-Black Tree.

True False

6. The Lavender Leopard Strikes Again (20 pts). You were examining your gem after
successfully stealing it only to realize that you had stolen a fake gem, and that the real Lavender
Leopard is in a much more secure museum. In this museum, not every room is connected. To
avoid ridiculous amounts of backtracking, you have decided to place teleporters in every room
you visit. At any point, if there is any path that is closer to the entrance than the one you are
taking, you will teleport to the room before and then travel to it. Once you find the gem, you
need to get out as soon as possible. To get out, you will teleport in the reverse order that you
arrived so you can collect all your teleporters (they aren’t that cheap!). Note that Hall and Room
have the same definition that they did for #4. Additionally, you do not need to redefine class
level variables and the constructor (you can if you want to), as they are the same as the Museum
class’s . You have 3 pages to complete this.
 If you cannot write the code, but can write the idea behind the problem, you can get up to ⅗ of
the points.
Hint 1: Use old algorithms that we’ve gone over and see how you can modify them to match this
problem
Hint 2: Look at other data structures.

//Optional Node class

class Node {

 public Node(__) {

 __

 __

 }

}

//Method to teleport between rooms then teleport out of the museum.

 public void teleportInNOut() {

 }

//Method to steal the jewel from the museum

public void teleportSteal(___________________________) {

 Hall[] edgeTo = ___

 double[] distTo = ___

 PriorityQueue pq = ___

 for (___) {

 }

 distTo[entrance.order] = 0.0;

 pq.insert(___);

 while (___) {

 __

 __

 __

 if (___) {

 break;

 }

 for (___) {

 if (___) {

 done(___);

 }

 }

 }

}

\\Method header is not complete

public void done(Hall h, Room temp,

___) {

 Room r;
 if (h.from().equals(temp)) {

 __

 } else {

 __

 }

 if (__) {

 distTo[r.order] = distTo[temp.order] + h.length;

 edgeTo[r.order] = h;

 if (___) {

 __

 } else {

 __

 }

 }

 }

}

//Method for leaving the museum

public void teleportLeave(___) {

 while (___) {

 __

 }

 System.out.println("Out again");

}

7. D-Arranged Lab (9 pts). You are viewing a research group, unfortunately, this research
group is full of some bumbling buffoons who happens to make a lot of mistakes. Each part is
worth 3 points.

a) While putting his chemicals into test tubes, one of the scientists realized that he accidentally
made a duplicate of one of his n chemicals, he just doesn’t know which one. However, he does
know that the duplicate element will be, at most, 10 test tubes away. What sort should he use to
quickly find the duplicate? Assume that all the chemicals are in their natural order, except for the
duplicate.

b) You have separated each of your n test tubes into k sections (so test tube 1 is now in seperated
into k test tubes and so on). The only problem is that while they were all getting analyzed, you
mixed them up again. Luckily, you have the name of the chemical and the time a chemical was
put into a test tube. You want to sort your test tubes by chemical and then by amount of time it
has been oxidizing. What sort can you use to ensure this is done as quickly as possible?

c) Now the scientists are going to input the name of their chemicals into a spreadsheet to see if
they are dealing with your list of hazardous materials. The list is in alphabetical order so to easily
cross reference what chemicals are dangerous, the scientists want to put the name of their
chemicals in alphabetical order, what sort should they use?

8) Riddle me this:
What room can no one enter?

9. Rotations and Aberrations (10 pts).

a) (5 pts) Create the 2-3 tree that corresponds to the below Binary Search Tree.

b) (5 pts) Create a Red-Black Tree that corresponds to the 2-3 tree/Binary Search Tree in part a.

10. JJJJ UNIT (15 pts).
You are starting your rapping career as a part of the prestigious rapping group J Unit. You want
to recruit new members so you can have a hip possi. To prove their worth to your group, you
have decided that you will test their vocabulary. To do this, you will make a TrieMap. This will
make a Trie, but for each word, you also have a note to see how many times it has been used. If
any word has been used more than 5 times, the person will not be able to join your group.
You are given the TrieNode class defined as follows:

public class TrieNode {

 char c;
 boolean isWord;

 String word;

 TrieNode[] children = new TrieNode[26];

 int count;}

Additionally, you are given that the TrieMap has a root class level variable and an addWord and
contains method.
*The LinkedList has an addAll method which adds all items from a collection to the end of the
list (e.g. LinkedList A = {A,B,C}, LinkedList B = {D, E,F}. A.addAll(B), A = {A,B,C,D,E,F}

Fill in the below methods

public LinkedList getAllWords(TrieNode start) {

__

__

__

__

__

__

__

__

__

__

__

__

public static boolean testCount(TrieMap t){

__

__

__

__

__

__

__

__

__

}

11. Median Heap (20 pts).

We have earlier dealt with Min Heaps and Max Heaps, now we are going to explore a new type
of heap, the Median Heap. The Median Heap will have 3 methods that you will need to fill in,
median, which finds the median element, insert, which inserts an element into the Median Heap,
and balanceHeap, which makes the heap balanced. You may need to use some of these methods
inside of others. Feel free to use any data structure that we have gone over.

public class MedianHeap {

 private _______________________ top = new _______________________

 private _______________________ bottom = new ____________________

 //find the median element, if there are an even amount of elements, take the

average of the 2 elements closest to the middle

 public int median() {

 int minSize = __

 int maxSize = ___

 if (___) {

 }

 if (___) {

 }

 if (__) {

 }

 return ___

 }

 //used to insert elements into the MedianHeap

 public void insert(int element) {

balanceHeap();

}

 //Balance the heap

private void balanceHeap() {

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

}

12. Faster than a Speeding Runtime (17 pts)
Fill in the runtimes for each of the following operations. If there is no tight bound, provide a
lower and upper bound. Provide a brief explanation as to why the runtime is what it is.

a) (5 pts) How much time does it take to create a heapify an array of N elements?

b) (3 pts)How much time does it take to find the minimum element in a Binary Search Tree

c) (3 pts) How much time does it take to place all the contents of a given MinHeap into an array
that is ordered from least to greatest.

d) (3 pts) How much time does it take to find the minimum value in a MaxHeap.

e) (3 pts) Find the runtime of getting all the words from a trie and then using MSD sort on them.

13) Future-Roaming (30 points).
You are a croissant delivery boy in the 31st century. You want to deliver your croissants as
quickly as possible; however, because you lost your client’s addresses and they live all across the
galaxy, so you don’t want to go door to door. You have the phone numbers of all the people who
ordered croissants from you, so you will attempt to use this to figure out in where you should go.
Each phone number is about 100000000000000000000000 digits long and you have a total of N
clients. You will use the following information about telephone numbers to help:

1. The sector code (the leftmost 10 digits) will allow you to figure out which sector a client
is in. On average, there are a total of of households you need to deliver to in the√N
sectors.

2. In the 31st century, telephone numbers have a cool feature where the difference between
the last 4 digits of any 2 telephone numbers in the same sector is equal to the distance
between their two corresponding households.

3. You know the address of 1 of the houses you need to go in each sector.

You want to go to sectors based off how many of your clients are in them and how close it is . If
a sector has 5 clients and is 2 Megadistances away, it is more appealing than a sector that has 1
client and is 1 Megadistance away. If a sector has 6 clients and is 2 Megadistances away, it is
less appealing than a sector with 9 clients and 3 Megadistances. If a sector has 4 clients and it is
2 Megadistances away, it is considered equal to a sector that has 2 clients that is 1 MegaDistance
away, at this point, you just pick which one to go to randomly . You will deliver to all the
households in that sector before going to the next sector. You also know how many
megadistances are between each sector, and you can assume that you will start at a location that
is equidistant from all the sectors.

Provide an implementation where figuring out which households are in which sector in Θ(N)
time, figuring out the distance between a house and all the other houses in a sector, must take, on
average,O() time, and delivering croissants to all the households on average, O(√N log N 2

3

√N)
time.

Assume that the time it takes you to walk 1 Minidistance (inside of a sector) is the same amount
of time it takes your spaceship to travel one Megadistance (between sectors). Justify why your
design works in the given time.

